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Trefoil Symmetry V: Class Representations
for the Minimal Clover Extension
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We construct four different real representations of the minimal vector clover extension
and their covariant derivatives. We determine their relation to the basic representation
and initiate the exploration of constrained superfields.
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1. INTRODUCTION

The introduction of theTrefoil symmetries and theiclover extensions
(Wills-Toro, 2001a,b; Wills-Toraet al., 2001) has opened the way for construct-
ing models with gradings beyond supersymmetry. The introduction dbalsec
superfield representation of the minimal vector clover extension has been success-
fully accomplished (Wills-Tor@t al,, 2003). The study of covariantly constrained
multiplets is greatly simplified with the introduction of novel representations. The
real, the chiral, and the antichiral representations of supersymmetry are an elo-
guent example of the advantages of such novel representations for model building
(Ferrareet al,, 1974). We are going to develop here four novel real representations.
Chiral and antichiral representations will be discussed elsewhere.

2. CLASS (j) REPRESENTATION OF THE ACTION OF GENERATORS

In quite analogous way as we obtain chiral representations in supersymme-
try, we ask for further representations of the minimal vector clover extension in
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superspace (Wills-Toret al., 2003). We can considerer novel combinations of the
transformations

G(x, &, &, B) = 6% Pout 51123 (i85 Tow +iTan gy +i) P(J’)u). 2.1)

where again, X o', & é_(])r , B(;)) are the coordinates of the enhanced superspace
(Wills-Toro et al,, 2003). We consider for instance the following three novel rep-
resentations:

Gi(x, & & B) = G(x, (61, 0, 0), (€, 0, 0), (0, B2y, Bea) (2.2)
x G(0,(0,40), £m), (0.&2), §@). (Bw, 0,0),  (23)
Ga(x, &, &, B) = G(x, (0,42, 0), (0,£), 0), (B 0, Bw)) (2.4)
x G(0, (5w, 0.£@), (5w, 0.£@) (0. B2, 0),  (2.5)
Ga(x, &, &, B) = G(x, (0, 0,&@), (0, 0,&w), (Bwy Be), 0)) (2.6)
x G(0, (5w &2, 0), (5 &2, 0). (0, 0,8@)).  (2.7)

From the products

Gi(a, p, p, @)Ga(x. &, £, B) = Ga(x, £, &, B), (2.8)
Ga(a, p. p, @)Ga(x. &, &, B) = Gao(x", &", &", B"), (2.9)
Gs(a, p, p, @)Gs(x, &, &, B) = Ga(x". £, &", B”). (2.10)
We obtain for theG; case:
By =85y +eogy, 1=123 (2.11)

— — — [ —-p _—0 I —p _—0c
£y =&y +rq) + éﬂ(zf“(s) n' (3, 2} + Eﬂ(af“(a n'(2,3),, (2.12)

N B A
Eny =8n trg t Eﬁ(z)p“(s) 0'(3, 2y + 5.3(3300‘(2) 7'(2, 3}y, (2.13)

5o =@ +Pe) 1B ¢ (L 3y, (2.14)
&) = E@) @) + 1B 1 (L 3, (2.15)
& = &G + o B a1 (L 2y, (2.16)
o = &) + P + 18]S 1 (1, 2, (2.17)

. _ _
X0 =X T30

H —V — i - —0
+1By (/0(2; + 5,3(3;)0‘(1) n" (1, 3)6/)) K:(2),"
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N
+iBg) (o) + 5B ) 1" (L, 2h0) K (3),1
P B X
+ |,3(2; (0(25 + 5/3(3) o7 A (, 3)0,0) K (2),
O X
+iBa (@) + 55(2) o) (1, 2),,) Kr (3),
— oy (€ Ke () + Eqy Ki (1), ). (2.18)
The analogous result fo(, £”, 5” By and (x"”, &” g”’ B can be easily in-

ferred. The transformationy( &, &, 8) — (x/, &, E B’) provides the class (1)
differential representation of the action of operators:

81Rg, = Dyt (2.19)
31Tay = ey (2.20)
e iﬂ(‘z)” K (2),/ 80 (2.21)
81T(3)r = 85(3) (3) K (3) X(o;" (222)
81Ty = 35(;;, (2.23)
S17y = Oy — 1By Ki'(2),/8, (2.24)
81-F(3)r 85 { |/3(5) r*(3)v ax(a;iv (225)
S1py, = Opr = 1B 1 (3 Lpo Oy — 1By 1 (2 L)oo Oy
— By 7 (3 Do Oy — 1B} 7 (2, Lo Oy
/3(35 Bz (1 (3, Do K (2 + 1 (3, 1) Ki (), )
—ﬂ(}fﬂ@, (12, Do RE@) +77(2, 1o K7 (3),)3, 0
(‘5(1) Kr (1)) + 5(1) K (1), )a, o (2.26)
8P, = O — éﬂ@f ("3, 2Dpo ey + 7 (3, Do), (2.27)
i N
81P(3)r7 = 8,3(*3;’ —_ 5,3(2)'0 (nr (2, 3)pa 8565 + nr (2, 3)10(7 aga;), (228)

Analogous results are inferred for the class (2) representéiigrand class (3)
representatiodizp for each generataP of the minimal vector clover extension.
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Strictly speaking, we should writeg'g1 instead ofs1» in the equations above,
since the differential representation considered refers to some fixed superfield
representatiod; .

Since the basic representation (Wills-Tetal, 2003) and the class (1), class
(2), and class (3) ones handle symmetrically the paramgtemgé (associated to
the antisymmetric vector generators), we might understand these representations
as real. The class (1), class (2), and class (3) representations concern a novelty of
the trefoil symmetries: besides the right—left or chiral-antichiral representations,
we are dealing with “class” representations.

Itis also a long but straightforward calculation to verify that the given repre-
sentation (2.19)—(2.28) verify the relations

[[(Slp(k),.,l 61 P(j)o,]] = _I(r}r (kv j)GOt(SlT(k“)r

+ﬁf(k1 j)aaalﬁkﬂ)f); k 7é J (229)
[82735» 81p, ]| = =181k Ks (K} 81 » (2.30)
[[‘slT_m's' 81 P(k)a]] = _isij's(k)fffgl Py ? (2.31)

and all furtherg-commutation relations between the given class (1) differential
representations vanish.

3. CLASS (j) REPRESENTATIONS OF THE COVARIANT DERIVATIVES

The covariant derivatives for the clasy fepresentations will be given ex-
plicitly for the class (1) case. The further classes are easily inferred.

The covariant derivative®e,,,, D1, , Dt,,, D14, D7, Of the basic rep-
resentatiorg-commute with each other (Wills-Toret al, 2003). This suggests
that superfields can be given that vanish under the action of all these covariant
derivatives. The class (1) representation provides an appropriate basis for the de-
scription of such covariantly constrained superfields as follows from its covariant
derivatives:

Dityy = 8y + iBay Rr*(l)u“ax&;‘, (3.1)
D17y = gy + 1By Ki(1),9, 50 (3.2)
Ditey =3 Dafy = g, (3.3)
Dty =g, Dufy =0y, (3.4)

Dlp(l)o' = 8/3@3’! (3.5)
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Diry, = 8,3(—2)0 T i/3(71)p{'7r(1' 2)oar 35(5)' +i' (1, 2o 857(5;}

LB I 3, 2+ (3, Dyt )

+i(Eq) Kr (2 + & Ki (2))d, . (3.6)
Dipgy, = 9p5 + iﬂ(_lf{nr(l' 3o Oy + ' (L, 3)so 35_(5;}

LB 1 2, Bty +3 (2, Bty )

+1(5) Kr (3) + &) Ki (3),) 9, (3.7

The simple structure of the mutualtycommuting covariant derivativeB;p,, ,
D11y » D17,y D11y » D1y iMplies that a covariantly constrained class (1) super-
field can be constructed that does not depend on the paramgieés), £2), £3),
&)

A long but straightforward computation proves that the following relations
hold:

HDlF’(k)n' DlP(na]] = i(”r(k' )oa Dty

+ 7 (K, 1)oaDiyryy ) K# | (3.8)
[Darye: Diry, [ = i‘SJkKs(k)aMaX@;h 3.9
[[le(k)s’ DlP(j)a]] = i3JkRS(k)a”3X<5)u, (3.10)

and all furtherg-commutations among these covariant derivatives vanish. The
covariant derivatives (3.1)—(3.4rcommute with all the class (1) representation

of generators;» given in (2.19)—(2.28), as expected. Accordingly, the basic, the
class (1), class (2), and class (3) representations share the same main features, and
the algebraic relations are maintained by covariance. In particular, the algebraic
relations among covariant derivatives obtained for the basic representation hold in
all the novel representations.

4. RELATIONS AMONG THE BASIC AND CLASS ( j)
REPRESENTATIONS

For the construction of models with the considered symmetries it is useful to
recognize the relation between the diverse representations. In particular, we want
to determine a relation among the diverse superfield representations in terms of
“shifts” in the enhanced superspace.

We will present the relation among the basic representation and the class (1)
representation of a superfield. The relation between the basic and the class (2)
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and class (3) representations is easily inferred. The relation between two different

representations, say clag¥ énd classk), is obtained by relating the clas$)(to

the basic representation, and then relating the basic and kJasp(esentation.
Let 5o be a differential operator in the basic representation and let

d(x,£&,&, B) be a superfield also in the basic representation. det and

Di(x, &, &, B) be, respectively, the operator and superfield in the clids®f-

resentation. They are related by a differential oper§tpso that

D(x, £, & B) = eSDi(x, & &, B), 4.1)
dp = eséioefs. (4.2)

Accordingly
So®(x, & &, B) = €S58i0®i(x, & &, B). (4.3)

The operatolS has trivial index assignment, hence the relation (4.2) can be ex-
panded in orders df:

1
Sio = e 9509 =50+[5o,3]+§[[50,3]a Sl+--- (4.4)

where the expansion should be pursued until all further terms are proved to be
vanishing.

In particular, for the relation between the basic and the class (1) representation
we find

i
S = 5 (6 By Ki (D) + &) By KF (D)) 8

E(é(z) ,3(2)K )" +§(z) ,3(2)K ), ) X 0
i

> (6@ B3 Kr(@3)" + 5(1) By Ki'(3),")d,
i

—5haS ;ﬁ(lT.) 0 (L, Dpody) + 7 (L1, ped ) (45)

1 _ . ~
—5Pa _Zﬂ(lfi)ﬂ(i‘)”{n’ (1, 1o K7 (i),

A (L, L0 K7, 0

The form of S and S; is easily inferred.

The reader might verify that the ter%ﬁ[éo, S1, S]in (4.4) will be relevant
for establishing the relation betweép ands;» or betweerD» andDj». But no
further terms contribute in expansion (4.4) due to the particular form ofthe
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The action ofe™ on ®; produces a “shift” in the enhanced superspace. The
relation between the superfieldgx, &, &, 8) and®1(y, &, &, B)—the former in
the basic and the later in the class (1) representation—is given by

O(x, &, &, B)
=<b1<xm#4—%(aﬁﬁufﬁfﬂ%ﬂﬁ-iﬂﬂufK?UJ#)

( @B K@, + &2 By Ki (2)))
—%@@maK($“+§@@§Kﬂ$#)
-—%ﬁh?%Qﬁ&%ﬁ@WnWHt1»0Rﬂ0ﬂ—%ﬂCﬁhlhnKﬂU#L
(65661 — 5205 B3 Do 8 = 5867 P @0 D )
(6698 — 525 B33 Do B — 805 P 2. e )

(Bay, B2y, ﬂ(s))) (4.6)

The relation betwee® and®, and®j is easily inferred.
Let A; be a superfield in class (1) representation fulfilling the covariant
constraints:

Dipy, A1 = 0, (4.7)
D:|_'|'(2)r Al = O, Dl-F(Z)f A]_ = O, (48)
D1'|'(3)r Aj_ = 0, D:|_-|f(3)f A]_ =0. (49)

Such a constrained superfield will be calledass (1) superfieldHence

A= A (X (5w, 0,0, (B, 0,0, (0, By, B@)) - (4.10)

Correspondingly, its relation to its basic representafignis given by

Alb(Xl E! E_! ﬂ)
— o (ol + e AR + B ()
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i
- 5(5(2) Bz Kr @), + 5(2) Ba Ki'(2),))
- 563 B KBV + &5 A K7 3))

1 _ . ~ Foats .
= B 2 BBy U (L, 10,0 REG) + 7 (L, 1o K70,
i1

(665,0.0) €3, 0.0). 0.8 A7) ). @11)

which corresponds in this case to a purely space-time shifting. The corresponding
relations for class (2) and class (3) (constrained) superfields are easily inferred.

5. CLASS (0) REPRESENTATION OF THE ACTION OF GENERATORS

The basic (Wills-Toret al., 2003), the class (1), class (2), and class (3) repre-
sentations of the minimal vector clover extension obtained so far share the property
of being real representations. There is nevertheless a further real representation that
merits attention. The covariant derivatives,,, , D7, , Dv,,, D7, , D1, D7,
g-commute among them, hence we except to have a further real representation in
which all this operators are derivatives with respect to the varigplgand;.
Consider then the following representation

Golx, &, & B) = G(x, (0,0,0), (0,0, 0)(Bu), By, B))
xG(0, (5a) é@) 5@): (€ 52 ), (0,0,0).  (5.1)
The composition of two such transformations

GO(a;pyﬁy C{)GO(X!%‘151 ﬂ) = GO(X’%’;B)! (5‘2)
leads to the superspace coordinates

o) = X(5f+a(5§t+if36‘) (ogis Ke (1), + 2y Re (),1)
,3(1) 05(]) Zﬂ(kﬂ)a(k) 1 (K, kT1)op Ke (1),
+ (K kDo Ke (), ), (5.3)

_ i o o .
S5 = &0 +og + > > By ey (Kt Ko (5.4)
o

S5 = &0 oG + Z'B(k) gy i (Kt K)oy, (5.5)
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By = By + ey (5.6)

From the transformationy( &, £, 8) — (%, £, &, B) we infer what will be called
the class (0) representation of the generators:

8OP(0)M 8)((0) (57)
Soty = g1 — 1By PA<|r>'<(l')v“3)(*m (5.8)
Botyy = g5 — 'ﬂm KE () 0y (5.9)
Sopw, = Uiy — 5 Z Buctiy (0" (ki 1. Koo Becr + 7 (KT 1, K)o 051 |
—3 Zﬁ&%)ﬂ(—j;{nr(kﬂ' K)po Rr*(i)uu
j#k
+iif (K, K)o K7 (1), 0, (5.10)

It is straightforward to verify that they fulfil thg-commutators relations:

[[80py. » Sorgy, ]| = —1(n" (K, Doadory, + A" (K, DowboTyyy ), (5.11)
[[‘SOT(J')S' 50P(k)0]] = —i8jk Ks(K), Sop), (5.12)
[[SO-F(j)'S’ Sop(k)o]] = _ifsjk R'S(I()ONYSOP(O)M- (5.13)

All further g-commutation relations among such differential representations
vanish.

6. CLASS (0) REPRESENTATIONS OF THE COVARIANT DERIVATIVES

As already anticipated, the covariant derivatives in the class (0) represen-
tation adopt a particularly simple form for the covariant derivatildgsj) and

Dot (j). -
Dot (jyr = 91> (6.1)
Doty = 91 (6.2)

i _ . JEP
Dopy, = aﬁ&)” + 2 Z ﬂ(kﬁi){nr (kt], K)o aEG)r + 1" (KT, K)o aif_(f)f}

+i{&4 K (k)" +§(k)K (k) }
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Zﬂ(kmﬂ(,) 0" (kt], K)o Ki1(0),

+ 7 (KT, K)o K (J) S0y (6.3)
Again, they fulfill the expected commutation relations

[[DOP(k)Uv DOP(J'),]]] = +I(’7r (k1 i)aa DOT(kﬂ)r + ﬁr (kl i)UDt DO-F(kﬂ)f)! J # k

(6.4)
[Dor s Dopy, ]| = +isjicKs(K), 3, . (6.5)
HDOf(i)s’ DOP(k)u]] = +i8jkké(k)gﬂax(5§‘- (6.6)

and all furtherg-commutations among these covariant derivatives vanish. The
covariant derivatives (6.1)—(6.8fcommute with all the class (0) representations
of the algebra generators (5.7)—(5.10) as expected.

7. RELATION AMONG THE BASIC AND THE CLASS (0)
REPRESENTATION

Letép be adifferential operator ardlx , £, £, 8) asuperfield bothinthe basic
representation. Leyo and®o(x, &, &, 8) be the same operator and superfield but
in the class (0) representation. They are related by a differential op&zatath
trivial index assignment:

D(x, & &, B) = e¥di(x, &, &, B), (7.1)
So = 6%800673). (7.2)

Accordingly
8o®(x, &, &, B) = €¥800®i (X, £, £, B) (7.3)

The differential operatog has the form

S’__E 123{ (J)K (J)H"‘E(J)K ().} (_J)vax() (7.4)
i=

Accordingly, the action 0&% on ®, produces a space-time shift in the enhanced
superspace:

O(x, & & B) =

®g <X(o) ! 23{§(J)K (J)M+§(J)K () },3(_1;1&5; ﬂ) (7.5)
J
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Let Ag be a superfield in class (0) representation fulfilling the covariant constraints:

Dor(j). Ao =0, Dot(jy Ao = 0. (7.6)
Such a constrained superfield will be calleda@ss(0) superfield Hence
Ao = Ao(x(' (0,0,0), (0,0, 0)(B), B Ba))- (7.7)
Its relation to its basic representatiég, will be given by
Ao(x. £, B) =

Ao<x(o§‘—'5 Yo {EGKIGL + &5 KD B O, o,ﬂ). (7.8)

j=12,3

8. CONCLUSIONS

We have obtained four novel real representations of the minimal vector clover
extension. The relation among them has also been obtained. The novel constrained
superfields will offer clover multiplets with particular field components content.
These representations will prove very useful in relating to well-established mod-
els in Quantum Field Theory. Further representations in the spirit of chiral and
antichiral representations will be explored elsewhere.
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