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We construct four different real representations of the minimal vector clover extension
and their covariant derivatives. We determine their relation to the basic representation
and initiate the exploration of constrained superfields.
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1. INTRODUCTION

The introduction of theTrefoil symmetries and theirclover extensions
(Wills-Toro, 2001a,b; Wills-Toroet al., 2001) has opened the way for construct-
ing models with gradings beyond supersymmetry. The introduction of thebasic
superfield representation of the minimal vector clover extension has been success-
fully accomplished (Wills-Toroet al., 2003). The study of covariantly constrained
multiplets is greatly simplified with the introduction of novel representations. The
real, the chiral, and the antichiral representations of supersymmetry are an elo-
quent example of the advantages of such novel representations for model building
(Ferraraet al., 1974). We are going to develop here four novel real representations.
Chiral and antichiral representations will be discussed elsewhere.

2. CLASS (j) REPRESENTATION OF THE ACTION OF GENERATORS

In quite analogous way as we obtain chiral representations in supersymme-
try, we ask for further representations of the minimal vector clover extension in
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superspace (Wills-Toroet al., 2003). We can considerer novel combinations of the
transformations

G(χ , ξ, ξ̄ , β) = eiχ−µ(0) P(0)µ +
∑

j=1,2,3

(
iξ−r

( j ) T( j )r + iT̄( j )ṙ ξ̄
−ṙ
( j ) + iβ−µ( j ) P( j )µ

)
. (2.1)

where again, (χ−µ(0) , ξ−r
( j ) , ξ̄−ṙ

( j ) , β−µ( j ) ) are the coordinates of the enhanced superspace
(Wills-Toro et al., 2003). We consider for instance the following three novel rep-
resentations:

G1(χ , ξ, ξ̄ , β) = G
(
χ ,
(
ξ(1), 0, 0

)
,
(
ξ̄(1), 0, 0

)
,
(
0,β(2), β(3)

)
(2.2)

×G
(
0,
(
0, ξ(2), ξ(3)

)
,
(
0, ξ̄(2), ξ̄(3)

)
,
(
β(1), 0, 0

))
, (2.3)

G2(χ , ξ, ξ̄ , β) = G
(
χ ,
(
0, ξ(2), 0

)
,
(
0, ξ̄(2), 0

)
,
(
β(1), 0,β(3)

))
(2.4)

×G
(
0,
(
ξ(1), 0, ξ(3)

)
,
(
ξ̄(1), 0, ξ̄(3)

)
,
(
0,β(2), 0

))
, (2.5)

G3(χ , ξ, ξ̄ , β) = G
(
χ ,
(
0, 0,ξ(3)

)
,
(
0, 0, ξ̄(3)

)
,
(
β(1), β(2), 0

))
(2.6)

×G
(
0,
(
ξ(1), ξ(2), 0

)
,
(
ξ̄(1), ξ̄(2), 0

)
,
(
0, 0,β(3)

))
. (2.7)

From the products

G1(a, ρ , ρ̄, α)G1(χ , ξ, ξ̄ , β) = G1(χ ′, ξ ′, ξ̄ ′, β ′), (2.8)

G2(a, ρ , ρ̄, α)G2(χ , ξ, ξ̄ , β) = G2(χ ′′, ξ ′′, ξ̄ ′′, β ′′), (2.9)

G3(a, ρ , ρ̄, α)G3(χ , ξ, ξ̄ , β) = G3(χ ′′′, ξ ′′′, ξ̄ ′′′, β ′′′). (2.10)

We obtain for theG1 case:

β
′−µ
( j ) = β−µ( j ) + α−µ( j ) , j = 1, 2, 3 (2.11)

ξ ′−r
(1) = ξ−r

(1) + ρ−r
(1) +

i

2
β
−ρ
(2) α

−σ
(3) η

r (3, 2)σρ + i

2
β
−ρ
(3) α

−σ
(2) η

r (2, 3)σρ , (2.12)

ξ̄ ′−ṙ
(1) = ξ̄−ṙ

(1) + ρ̄−ṙ
(1) +

i

2
β
−ρ
(2) α

−σ
(3) η̂

ṙ (3, 2)σρ + i

2
β
−ρ
(3) α

−σ
(2) η̂

ṙ (2, 3)σρ , (2.13)

ξ ′−r
(2) = ξ−r

(2) + ρ−r
(2) + iβ−ρ(3) α

−σ
(1) η

r (1, 3)σρ , (2.14)

ξ̄ ′−ṙ
(2) = ξ̄−ṙ

(2) + ρ̄−ṙ
(2) + iβ−ρ(3) α

−σ
(1) η̂

ṙ (1, 3)σρ , (2.15)

ξ ′−r
(3) = ξ−r

(3) + ρ−r
(3) + iβ−ρ(2) α

−σ
(1) η

r (1, 2)σρ , (2.16)

ξ̄ ′−ṙ
(3) = ξ̄−ṙ

(3) + ρ̄−ṙ
(3) + iβ−ρ(2) α

−σ
(1) η̂

ṙ (1, 2)σρ , (2.17)

χ
′−µ
(0) = χ−µ(0) + a−µ(0)

+ iβ−ν(2)

(
ρ−r

(2) +
i

2
β
−ρ
(3) α

−σ
(1) η

r (1, 3)σρ
)
Kr (2) µν



P1: FYJ

International Journal of Theoretical Physics [ijtp] PP777-ijtp-461703 April 1, 2003 21:3 Style file version May 30th, 2002

Trefoil Symmetry V: Class Representations 75

+ iβ−ν(3)

(
ρ−r

(3) +
i

2
β
−ρ
(2) α

−σ
(1) η

r (1, 2)σρ
)
Kr (3) µν

+ iβ−ν(2)

(
ρ̄−ṙ

(2) +
i

2
β
−ρ
(3) α

−σ
(1) η̂

ṙ (1, 3)σρ
)
K̂ṙ (2) µν

+ iβ−ν(3)

(
ρ̄−ṙ

(3) +
i

2
β
−ρ
(2) α

−σ
(1) η̂

ṙ (1, 2)σρ
)
K̂ṙ (3) µν

− iα−ν(1)

{
ξ−r

(1) Kr (1) µν + ξ̄−ṙ
(1) K̂ṙ (1) µν

}
. (2.18)

The analogous result for (χ ′′, ξ ′′, ξ̄ ′′, β ′′) and (χ ′′′, ξ ′′′, ξ̄ ′′′, β ′′′) can be easily in-
ferred. The transformation (χ , ξ, ξ̄ , β) 7→ (χ ′, ξ ′, ξ̄ ′, β ′) provides the class (1)
differential representation of the action of operators:

δ1P(0)µ = ∂χ−µ(0)
, (2.19)

δ1T(1)r = ∂ξ−r
(1)

, (2.20)

δ1T(2)r = ∂ξ−r
(2)
− iβ−ν(2) K̂ ∗r (2) µν ∂χ−µ(0)

, (2.21)

δ1T(3)r = ∂ξ−r
(3)
− iβ−ν(3) K̂ ∗r (3) µν ∂χ−µ(0)

, (2.22)

δ1T̄(1)ṙ
= ∂ξ̄−ṙ

(1)
, (2.23)

δ1T̄(2)ṙ
= ∂ξ̄−ṙ

(2)
− iβ−ν(2) K ∗ṙ (2) µν ∂χ−µ(0)

, (2.24)

δ1T̄(3)ṙ
= ∂ξ̄−ṙ

(3)
− iβ−ν(3) K ∗ṙ (3) µν ∂χ−µ(0)

, (2.25)

δ1P(1)σ = ∂β−σ(1)
− iβ−ρ(3) η

r (3, 1)ρσ ∂ξ−r
(2)
− iβ−ρ(2) η

r (2, 1)ρσ ∂ξ−r
(3)

− iβ−ρ(3) η̂
ṙ (3, 1)ρσ ∂ξ̄−ṙ

(2)
− iβ−ρ(2) η̂

ṙ (2, 1)ρσ ∂ξ̄−ṙ
(2)

− 1

2
β
−ρ
(3) β

−ν
(2)

(
ηr (3, 1)ρσ K̂ ∗r (2) µν + η̂ṙ (3, 1)ρσ K ∗ṙ (2) µν

)
∂χ−µ(0)

− 1

2
β
−ρ
(2) β

−ν
(3)

(
ηr (2, 1)ρσ K̂ ∗r (3) µν + η̂ṙ (2, 1)ρσ K ∗ṙ (3) µν

)
∂χ−µ(0)

− i
(
ξ−r

(1) Kr (1) µσ + ξ̄−ṙ
(1) K̂ṙ (1) µσ

)
∂χ−µ(0)

, (2.26)

δ1P(2)σ = ∂β−σ(2)
− i

2
β
−ρ
(3)

(
ηr (3, 2)ρσ ∂ξ−r

(1)
+ η̂ṙ (3, 2)ρσ ∂ξ̄−ṙ

(1)

)
, (2.27)

δ1P(3)σ = ∂β−σ(3)
− i

2
β
−ρ
(2)

(
ηr (2, 3)ρσ ∂ξ−r

(1)
+ η̂ṙ (2, 3)ρσ ∂ξ̄−ṙ

(1)

)
, (2.28)

Analogous results are inferred for the class (2) representationδ2O and class (3)
representationδ3O for each generatorO of the minimal vector clover extension.
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Strictly speaking, we should writeδ81
O instead ofδ1O in the equations above,

since the differential representation considered refers to some fixed superfield
representation81.

Since the basic representation (Wills-Toroet al., 2003) and the class (1), class
(2), and class (3) ones handle symmetrically the parametersξ andξ̄ (associated to
the antisymmetric vector generators), we might understand these representations
as real. The class (1), class (2), and class (3) representations concern a novelty of
the trefoil symmetries: besides the right–left or chiral–antichiral representations,
we are dealing with “class” representations.

It is also a long but straightforward calculation to verify that the given repre-
sentation (2.19)–(2.28) verify the relations[[

δ1 P(k)σ , δ1 P( j )α

]] = −i(ηr (k, j )σαδ1T(k† j )r

+ η̂ṙ (k, j )σαδ1 T̄(k† j ) ṙ ); k 6= j (2.29)[[
δ1T( j )s, δ1 P(k)σ

]] = −iδ jk Ks(k)µσ δ1 P(0)µ , (2.30)[[
δ1 T̄( j )ṡ

, δ1 P(k)σ

]] = −iδ jk K̂ṡ(k)µσ δ1 P(0)µ , (2.31)

and all furtherq-commutation relations between the given class (1) differential

representations vanish.

3. CLASS (j) REPRESENTATIONS OF THE COVARIANT DERIVATIVES

The covariant derivatives for the class (j ) representations will be given ex-
plicitly for the class (1) case. The further classes are easily inferred.

The covariant derivativesDP(1)σ , DT(2)r , DT̄(2)ṙ
, DT(3)r , DT̄(3)ṙ

of the basic rep-
resentationq-commute with each other (Wills-Toroet al., 2003). This suggests
that superfields can be given that vanish under the action of all these covariant
derivatives. The class (1) representation provides an appropriate basis for the de-
scription of such covariantly constrained superfields as follows from its covariant
derivatives:

D1T(1)r = ∂ξ−r
(1)
+ iβ−ν(1) K̂ ∗r (1) µν ∂χ−µ(0)

, (3.1)

D1 T̄(1)ṙ
= ∂ξ̄−ṙ

(1)
+ iβ−ν(1) K ∗ṙ (1) µν ∂χ−µ(0)

, (3.2)

D1T(2)r = ∂ξ−r
(2)

, D1 T̄(2)ṙ
= ∂ξ̄−ṙ

(2)
, (3.3)

D1T(3)r = ∂ξ−r
(3)

, D1 T̄(3)ṙ
= ∂ξ̄−ṙ

(3)
, (3.4)

D1P(1)σ = ∂β−σ(1)
, (3.5)
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D1P(2)σ = ∂β−σ(2)
+ iβ−ρ(1)

{
ηr (1, 2)ρσ ∂ξ−r

(3)
+ η̂ṙ (1, 2)ρσ ∂ξ̄−ṙ

(3)

}
+ i

2
β
−ρ
(3)

{
ηr (3, 2)ρσ ∂ξ−r

(1)
+ η̂ṙ (3, 2)ρσ ∂ξ̄−ṙ

(1)

}
+ i
(
ξ−r

(2) Kr (2) µσ + ξ̄−ṙ
(2) K̂ṙ (2) µσ

)
∂χ−µ(0)

, (3.6)

D1P(3)σ = ∂β−σ(3)
+ iβ−ρ(1)

{
ηr (1, 3)ρσ ∂ξ−r

(2)
+ η̂ṙ (1, 3)ρσ ∂ξ̄−ṙ

(2)

}
+ i

2
β
−ρ
(2)

{
ηr (2, 3)ρσ ∂ξ−r

(1)
+ η̂ṙ (2, 3)ρσ ∂ξ̄−ṙ

(1)

}
+ i
(
ξ−r

(3) Kr (3) µσ + ξ̄−ṙ
(3) K̂ṙ (3) µσ

)
∂χ−µ(0)

. (3.7)

The simple structure of the mutuallyq-commuting covariant derivativesD1P(1)σ ,
D1T(2)r , D1T̄(2)ṙ

,D1T(3)r , D1T̄(3)ṙ
implies that a covariantly constrained class (1) super-

field can be constructed that does not depend on the parametersβ(1), ξ(2), ξ̄(2), ξ(3),
ξ̄(3).

A long but straightforward computation proves that the following relations
hold: [[

D1P(k)σ , D1P( j )α

]] = i
(
ηr (k, j )σαD1T(k† j )r

+ η̂ṙ (k, j )σαD1T̄(k† j )ṙ

)
, k 6= j (3.8)[[

D1T(k)s, D1P( j )σ

]] = iδ jk Ks(k) µσ ∂χ−µ(0)
, (3.9)[[

D1T̄(k)ṡ
, D1P( j )σ

]] = iδ jk K̂ṡ(k) µσ ∂χ−µ(0)
, (3.10)

and all furtherq-commutations among these covariant derivatives vanish. The
covariant derivatives (3.1)–(3.7)q-commute with all the class (1) representation
of generatorsδ1O given in (2.19)–(2.28), as expected. Accordingly, the basic, the
class (1), class (2), and class (3) representations share the same main features, and
the algebraic relations are maintained by covariance. In particular, the algebraic
relations among covariant derivatives obtained for the basic representation hold in
all the novel representations.

4. RELATIONS AMONG THE BASIC AND CLASS ( j)
REPRESENTATIONS

For the construction of models with the considered symmetries it is useful to
recognize the relation between the diverse representations. In particular, we want
to determine a relation among the diverse superfield representations in terms of
“shifts” in the enhanced superspace.

We will present the relation among the basic representation and the class (1)
representation of a superfield. The relation between the basic and the class (2)
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and class (3) representations is easily inferred. The relation between two different
representations, say class (j) and class (k), is obtained by relating the class (j ) to
the basic representation, and then relating the basic and class (k) representation.

Let δO be a differential operator in the basic representation and let
8(χ , ξ, ξ̄ , β) be a superfield also in the basic representation. LetδiO and
8i (χ , ξ, ξ̄ , β) be, respectively, the operator and superfield in the class (i) rep-
resentation. They are related by a differential operatorSi , so that

8(χ , ξ, ξ̄ , β) = eSi8i (χ , ξ, ξ̄ , β), (4.1)

δO = eSi δiOe−Si . (4.2)

Accordingly

δO8(χ , ξ, ξ̄ , β) = eSi δiO8i (χ , ξ, ξ̄ , β). (4.3)

The operatorSi has trivial index assignment, hence the relation (4.2) can be ex-
panded in orders ofSi :

δiO = e−Si δOeSi = δO + [δO, Si ] + 1

2
[[δO, Si ], Si ] + · · · (4.4)

where the expansion should be pursued until all further terms are proved to be
vanishing.

In particular, for the relation between the basic and the class (1) representation
we find

S1 = i

2

(
ξ−r

(1) β
−ν
(1) K̂ ∗r (1) µν + ξ̄−ṙ

(1) β
−ν
(1) K ∗ṙ (1) µν

)
∂χ−µ(0)

+ i

2

(
ξ−r

(2) β
−ν
(2) K̂ ∗r (2) µν + ξ̄−ṙ

(2) β
−ν
(2) K ∗ṙ (2) µν

)
∂χ−µ (0)

− i

2

(
ξ−r

(3) β
−ν
(3) K̂ ∗r (3) µν + ξ̄−ṙ

(1) β
−ν
(3) K ∗ṙ (3) µν

)
∂χ−µ (0)

− i

2
β−σ(1)

∑
i 6=1

β
−ρ
(1†i )

{
ηr (1†i , 1)ρσ ∂

−r
ξ(i )
+ η̂ṙ (1†i , 1)ρσ ∂

−ṙ
ξ̄(i )

}
(4.5)

− 1

24
β−σ(1)

∑
i 6=1

β
−ρ
(1†i )β

−ν
(i )

{
ηr (1†i , 1)ρσ K̂ ∗r (i ) µν

+ η̂ṙ (1†i , 1)ρσ K ∗ṙ (i ) µν
}
∂−µχ(0)

.

The form ofS2 andS3 is easily inferred.
The reader might verify that the term12[[δO, Si ], Si ] in (4.4) will be relevant

for establishing the relation betweenδO andδiO or betweenDO andDiO. But no
further terms contribute in expansion (4.4) due to the particular form of theSi .
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The action ofeS1 on81 produces a “shift” in the enhanced superspace. The
relation between the superfields8(χ , ξ, ξ̄ , β) and81(χ , ξ, ξ̄ , β)—the former in
the basic and the later in the class (1) representation—is given by

8(χ , ξ, ξ̄ , β)

= 81

(
χ
−µ
(0) +

i

2

(
ξ−r

(1) β
−ν
(1) K̂ ∗r (1) µν + ξ̄−ṙ

(1) β
−ν
(1) K ∗ṙ (1) µν

)
− i

2

(
ξ−r

(2) β
−ν
(2) K̂ ∗r (2) µν + ξ̄−ṙ

(2) β
−ν
(2) K ∗ṙ (2) µν

)
− i

2

(
ξ−r

(3) β
−ν
(3) K̂ ∗r (3) µν + ξ̄−ṙ

(3) β
−ν
(3) K ∗ṙ (3) µν

)
− 1

24
β−σ(1)

∑
i 6=1

β
−ρ
(1†i )β

−ν
(i )

{
ηr (1†i , 1)ρσ K̂ ∗r (i ) µν + η̂ṙ (1†i , 1)ρσ K ∗ṙ (i ) µν

}
,

(
ξ−r

(1) , ξ−r
(2) −

i

2
β−σ(1) β

−ρ
(3) η

r (3, 1)ρσ , ξ−r
(3) −

i

2
β−σ(1) β

−ρ
(2) η

r (2, 1)ρσ

)
,(

ξ−ṙ
(1) , ξ̄−ṙ

(2) −
i

2
β−σ(1) β

−ρ
(3) η̂

ṙ (3, 1)ρσ , ξ̄−ṙ
(3) −

i

2
β−σ(1) β

−ρ
(2) η̂

ṙ (2, 1)ρσ

)
,

(
β(1), β(2), β(3)

))
(4.6)

The relation between8 and82 and83 is easily inferred.
Let A1 be a superfield in class (1) representation fulfilling the covariant

constraints:

D1P(1)σ A1 = 0, (4.7)

D1T(2)r A1 = 0, D1T̄(2)ṙ
A1 = 0, (4.8)

D1T(3)r A1 = 0, D1T̄(3)ṙ
A1 = 0. (4.9)

Such a constrained superfield will be called aclass (1) superfield. Hence

A1 = A1
(
χ
−µ
(0) ,

(
ξ(1), 0, 0

)
,
(
ξ̄(1), 0, 0

)
,
(
0,β(1), β(3)

))
. (4.10)

Correspondingly, its relation to its basic representationA1b is given by

A1b(χ , ξ, ξ̄ , β)

= A1

(
χ
−µ
(0) +

i

2

(
ξ−r

(1) β
−ν
(1) K̂ ∗r (1) µν + ξ̄−ṙ

(1) β
−ν
(1) K ∗ṙ (1) µν

)
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− i

2

(
ξ−r

(2) β
−ν
(2) K̂ ∗r (2) µν + ξ̄−ṙ

(2) β
−ν
(2) K ∗ṙ (2) µν

)
− i

2

(
ξ−r

(3) β
−ν
(3) K̂ ∗r (3) µν + ξ̄−ṙ

(3) β
−ν
(3) K ∗ṙ (3) µν

)
− 1

24
β−σ(1)

∑
i 6=1

β
−ρ
(1†i )β

−ν
(i )

{
ηr (1†i , 1)ρσ K̂ ∗r (i ) µν + η̂ṙ (1†i , 1)ρσ K ∗ṙ (i ) µν

}
,

(
ξ−r

(1) , 0, 0), (̄ξ−ṙ
(1) , 0, 0), (0,β−σ(2) , β−σ(3)

))
, (4.11)

which corresponds in this case to a purely space-time shifting. The corresponding
relations for class (2) and class (3) (constrained) superfields are easily inferred.

5. CLASS (0) REPRESENTATION OF THE ACTION OF GENERATORS

The basic (Wills-Toroet al., 2003), the class (1), class (2), and class (3) repre-
sentations of the minimal vector clover extension obtained so far share the property
of being real representations. There is nevertheless a further real representation that
merits attention. The covariant derivativesDT(1)r , DT̄(1)ṙ

, DT(2)r , DT̄(2)ṙ
, DT(3)r , DT̄(3)ṙ

q-commute among them, hence we except to have a further real representation in
which all this operators are derivatives with respect to the variablesξ( j ) andξ̄( j ).
Consider then the following representation

G0(χ , ξ, ξ̄ , β) = G
(
χ , (0, 0, 0), (0, 0, 0),

(
β(1), β(2), β(3)

))
×G

(
0,
(
ξ(1), ξ(2), ξ(3)

)
,
(
ξ̄(1), ξ̄(2), ξ̄(3)

)
, (0, 0, 0)

)
. (5.1)

The composition of two such transformations

G0(a, ρ , ρ̄, α)G0(χ , ξ, ξ̄ , β) = G0(χ̆ , ξ̆ , ˘̄ξ , β̆), (5.2)

leads to the superspace coordinates

χ̆
−µ
(0) = χ−µ(0) + a−µ(0) + iβ−ν( j )

(
ρ−r

( j ) Kr ( j ) µν + ρ̄−ṙ
( j ) K̂ṙ ( j ) µν

)
− 1

3

(
β−ν( j ) − α−ν( j )

)∑
k 6= j

β
−ρ
(k† j )α

−σ
(k)

{
ηr (k, k† j )σρKr ( j ) µν

+ η̂ṙ (k, k† j )σρ K̂ṙ ( j ) µν
}
, (5.3)

ξ̆−r
( j ) = ξ−r

( j ) + ρ−r
( j ) +

i

2

∑
k 6= j

β
−ρ
(k) α

−σ
(k† j )η

r (k† j , k)σρ , (5.4)

ξ̆−ṙ
( j ) = ξ̄−ṙ

( j ) + ρ̄−ṙ
( j ) +

i

2

∑
k 6= j

β
−ρ
(k) α

−σ
(k† j )η̂

ṙ (k† j , k)σρ , (5.5)
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β̆
−µ
( j ) = β−µ( j ) + α−µ( j ) . (5.6)

From the transformation (χ , ξ, ξ̄ , β) 7→ (χ̆ , ξ̆ , ˘̄ξ , β̆) we infer what will be called
the class (0) representation of the generators:

δ0P(0)µ = ∂χ−µ(0)
, (5.7)

δ0T( j )r = ∂ξ−r
( j )
− iβ−ν( j ) K̂ ∗r ( j ) µν ∂χ−µ(0)

, (5.8)

δ0T̄( j )ṙ
= ∂ξ̄−ṙ

( j )
− iβ−ν( j ) K ∗ṙ ( j ) µν ∂χ−µ(0)

, (5.9)

δ0P(k)σ = ∂β−σ(k)
− i

2

∑
j 6=k

β
−ρ
(k† j )

{
ηr (k† j , k)ρσ ∂ξ−r

( j )
+ η̂ṙ (k† j , k)ρσ ∂ξ̄−ṙ

( j )

}
− 1

3

∑
j 6=k

β
−ρ
(k† j )β

−ν
( j )

{
ηr (k† j , k)ρσ K̂ ∗r (i ) µν

+ η̂ṙ (k† j , k)ρσ K ∗ṙ ( j ) µν
}
∂χ−µ(0)

. (5.10)

It is straightforward to verify that they fulfil theq-commutators relations:[[
δ0P(k)σ , δ0P( j )α

]] = −i
(
ηr (k, j )σαδ0T(k† j )r + η̂ṙ (k, j )σαδ0T̄(k† j )ṙ

)
, (5.11)[[

δ0T( j )s, δ0P(k)σ

]] = −iδ jk Ks(k) µσ δ0P(0)µ , (5.12)[[
δ0T̄( j )ṡ

, δ0P(k)σ

]] = −iδ jk K̂ṡ(k) µσ δ0P(0)µ . (5.13)

All further q-commutation relations among such differential representations
vanish.

6. CLASS (0) REPRESENTATIONS OF THE COVARIANT DERIVATIVES

As already anticipated, the covariant derivatives in the class (0) represen-
tation adopt a particularly simple form for the covariant derivativesD0T( j )r and
D0T̄( j )ṙ

:

D0T( j )r = ∂ξ−r
( j )

, (6.1)

D0T̄( j )ṙ = ∂ξ̄−ṙ
( j )

, (6.2)

D0P(k)σ = ∂β−σ(k)
+ i

2

∑
j 6=k

β
−ρ
(k† j )

{
ηr (k† j , k)ρσ ∂ξ−r

( j )
+ η̂ṙ (k† j , k)ρσ ∂ξ̄−ṙ

( j )

}
+ i
{
ξ−r

(k) Kr (k) µσ + ξ̄−ṙ
(k) K̂ṙ (k) µσ

}
∂χ−µ(0)
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− 1

3

∑
j 6=k

β
−ρ
(k† j )β

−ν
( j )

{
ηr (k† j , k)ρσ K̂ ∗r (i ) µν

+ η̂ṙ (k† j , k)ρσ K ∗ṙ ( j ) µν
}
∂χ−µ(0)

. (6.3)

Again, they fulfill the expected commutation relations[[
D0P(k)σ , D0P( j )α

]] = +i
(
ηr (k, i )σαD0T(k† j )r + η̂ṙ (k, i )σαD0T̄(k† j )ṙ

)
, j 6= k

(6.4)[[
D0T( j )s, D0P(k)σ

]] = +iδ jk Ks(k) µσ ∂χ−µ(0)
, (6.5)[[

D0T̄( j )ṡ
, D0P(k)σ

]] = +iδ jk K̂ṡ(k) µσ ∂χ−µ(0)
. (6.6)

and all furtherq-commutations among these covariant derivatives vanish. The
covariant derivatives (6.1)–(6.3)q-commute with all the class (0) representations
of the algebra generators (5.7)–(5.10) as expected.

7. RELATION AMONG THE BASIC AND THE CLASS (0)
REPRESENTATION

LetδO be a differential operator and8(χ , ξ, ξ̄ , β) a superfield both in the basic
representation. Letδ0O and80(χ , ξ, ξ̄ , β) be the same operator and superfield but
in the class (0) representation. They are related by a differential operatorS0 with
trivial index assignment:

8(χ , ξ, ξ̄ , β) = eS08i (χ , ξ, ξ̄ , β), (7.1)

δO = eS0δ0Oe−S0. (7.2)

Accordingly

δO8(χ , ξ, ξ̄ , β) = eS0δ0O8i (χ , ξ, ξ̄ , β) (7.3)

The differential operatorS0 has the form

S0 = − i

2

∑
j=1,2,3

{
ξ−r

( j ) K̂ ∗r ( j ) µν + ξ̄−ṙ
( j ) K ∗ṙ ( j ) µν

}
β−ν( j ) ∂χ−µ(0)

. (7.4)

Accordingly, the action ofeS0 on80 produces a space-time shift in the enhanced
superspace:

8(χ , ξ, ξ̄ , β) =

80

(
χ
−µ
(0) −

i

2

∑
j=1,2,3

{
ξ−r

( j ) K̂ ∗r ( j ) µν + ξ̄−ṙ
( j ) K ∗ṙ ( j ) µν

}
β−ν( j ) , ξ, ξ̄ , β

)
. (7.5)
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Let A0 be a superfield in class (0) representation fulfilling the covariant constraints:

D0T( j )r A0 = 0, D0T̄( j )ṙ
A0 = 0. (7.6)

Such a constrained superfield will be called aclass(0) superfield. Hence

A0 = A0
(
χ
−µ
(0) , (0, 0, 0), (0, 0, 0),

(
β(1), β(2), β(3)

))
. (7.7)

Its relation to its basic representationA0b will be given by

A0b(χ , ξ, ξ̄ , β) =

A0

(
χ
−µ
(0) −

i

2

∑
j=1,2,3

{
ξ−r

( j ) K̂ ∗r ( j ) µν + ξ̄−ṙ
( j ) K ∗ṙ ( j ) µν

}
β−ν( j ) , 0, 0,β

)
. (7.8)

8. CONCLUSIONS

We have obtained four novel real representations of the minimal vector clover
extension. The relation among them has also been obtained. The novel constrained
superfields will offer clover multiplets with particular field components content.
These representations will prove very useful in relating to well-established mod-
els in Quantum Field Theory. Further representations in the spirit of chiral and
antichiral representations will be explored elsewhere.
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